Version 1.0

General Certificate of Education (A-level) January 2012

Mathematics

MFP1

(Specification 6360)

Further Pure 1

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
	$\alpha + \beta = -\frac{7}{2}$	B1	1000	
	$\alpha\beta = 4$	B1	2	
(b)	$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2\alpha\beta=\left(-\frac{7}{2}\right)^{2}-2(4)$	M1		Using correct identity with ft or correct substitution
	$=\frac{49}{4}-8=\frac{17}{4}$	A1	2	CSO AG. A0 if $\alpha + \beta$ has wrong sign
(c)	(Sum=)			
	$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{(\alpha\beta)^2} = \frac{17/4}{16} \left(= \frac{17}{64} \right)$	M1		Writing $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ in a correct suitable
				form with ft or correct substitution
	$=\frac{17}{64}$	A1F		ft wrong value for $\alpha\beta$
	(Product =) $\frac{1}{(\alpha\beta)^2} = \frac{1}{16} \left(= \frac{4}{64} \right)$	B1F		ft wrong value for $\alpha\beta$
	$x^2 - Sx + P \ (= 0)$	M1		Using correct general form of LHS of eqn with ft substitution of c's <i>S</i> and <i>P</i> values. PI
	Eqn is $64x^2 - 17x + 4 = 0$	A1	5	CSO Integer coefficients and '= 0' needed
	Total		9	
2(a)	$\int x^{-\frac{2}{3}} \mathrm{d}x = 3x^{\frac{1}{3}} (+c)$	B1		$kx^{\frac{1}{3}}$, $k \neq 0$ ie condone incorrect non-zero coefficient here
	$(3)x^{\frac{1}{3}} \rightarrow \infty$ as $x \rightarrow \infty$, so no finite value	E1		
(b)	$\int x^{-\frac{4}{3}} \mathrm{d}x = -3x^{-\frac{1}{3}}(+c)$	M1		$\lambda x^{-\frac{1}{3}}, \ \lambda \neq 0$
		A1		$-3x^{-1/3}$ OE
	$\int_{8}^{\infty} x^{-\frac{4}{3}} dx = -3(0 - \frac{1}{2}) = \frac{3}{2}$	A1	5	CSO
	Total		5	

QSolutionMarksTotalComme $3(a)(i)$ $x = \pm 3i$ B11 $\pm 3i$ $(a = 0, b = \pm 3)$ (ii) $x = -2 \pm 3i$ B1F1If not correct, ft wrong provided (i) has a non-z(b)(i) $(1 + x)^3 = 1 + 3x + 3x^2 + x^3$ B11Terms simplified in any Replacing x in (b)(i) by cubing correctly, only ft	answer(s) to (i) zero <i>b</i> value
(b)(i) $(1+x)^3 = 1 + 3x + 3x^2 + x^3$ (ii) $(1+2i)^3 = 1 + 3(2i) + 3(2i)^2 + (2i)^3$ B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1	zero <i>b</i> value
(ii) $(1+2i)^3 = 1 + 3(2i) + 3(2i)^2 + (2i)^3$ Replacing x in (b)(i) by	y order.
non-zero coefficients fr	ft on c's wrong
= 1 + 3(2i) + 3(4)(-1) + (8)(-i) = -11 - 2i M1 A1 3 $Use of i2 = -1 at least of -11 - 2i(a = -11, b = -1)$	
(iii) $z^* - z^3 = 1 - 2i - (-11 - 2i)$ = 12 M1 A1F M1 A1F M1 Luse of $z^* = 1 - 2i$ If not correct, only ft or 1 - 2i - c's (b)(ii) if c's of the form $a + bi$ with	s (b)(ii) answer is
Total 8	, ,
4(a) $\Sigma r^2 (4r-3) = 4\Sigma r^3 - 3\Sigma r^2 \dots$ M1Splitting up the sum int sums. PI by next line.	to two separate
$=4\left(\frac{1}{4}\right)n^2(n+1)^2-3\left(\frac{1}{6}\right)n(n+1)(2n+1)$ m1 Substitution of the two FB	summations from
$= n(n+1)\left[n(n+1) - \frac{1}{2}(2n+1)\right] \qquad \text{m1} \qquad \text{Taking out common fac}$	ctors n and $n+1$.
A1 Remaining expression expressin expression expression expression expression expression ex	
Sum = $\frac{1}{2}n(n+1)(2n^2-1)$ A1 5 Be convinced as form of penalise any jumps or b	
(b) $\sum_{r=20}^{40} r^2 (4r-3)$ = $\sum_{r=1}^{40} r^2 (4r-3) - \sum_{r=1}^{19} r^2 (4r-3)$ M1 Attempt to take S(19) for part (a)	from S(40) using
= 20(41)(3199) - 9.5(20)(721) = 2623180 - 136990 $\sum_{r=20}^{40} r^2 (4r - 3) = 2486190$ A1 2 2486190; Since 'Hen SC $\sum_{r=1}^{40} \dots - \sum_{r=1}^{20} \dots \dots \text{ cl}$ and evaluated to 245539	
Total 7	

Q	Solution	Marks	Total	Comments
5(a)(i)	Line joining points A and B	B1	1	Must not be linked to Q
	$x_P = 2 + w$, $\frac{w}{10} = \frac{5 - 2}{22 - (-10)}$	M1		OE eg correct equation for AB with y replaced by 0
	$x_P = 2 + 10 \times \frac{3}{32}$	A1		$2+10 \times \frac{3}{32}$ OE
	$x_P = 2.9375 = 2.9$ (to 1dp)	A1	3	CAO Must be 2.9
(b)(i)	Tangent at A drawn	B1	1	At least as far as meeting the <i>x</i> -axis. Accept reasonable attempt. Must not be linked to <i>P</i> .
(ii)	$x_Q = 2 - \frac{-10}{8}$	M1		PI by 3.25 or 26/8 OE
(11)	0	Al	2	CAO Must be 3.25
	= 3.25 Total	AI	2 7	CAO Must de 5.25
6(a)	$\tan\frac{\pi}{6} = \frac{1}{\sqrt{3}}$	B1		OE (PI) Stated or used. A correct angle in 1st or 3rd quadrant for $\tan^{-1}(1/\sqrt{3})$. Condone degrees / decimal equivs.
	$\left(\frac{x}{2}-\frac{\pi}{4}\right) = n\pi + \frac{\pi}{6};$	M1		Correct use of either $n\pi$ or $2n\pi$. Eg either $n\pi + \alpha$ or both $2n\pi + \alpha$ and $2n\pi + \pi + \alpha$ OE where α is c's tan ⁻¹ ($1/\sqrt{3}$). Condone degrees/decimals/mixture
	$x = 2\left(n\pi + \frac{\pi}{6} + \frac{\pi}{4}\right) \left(=2n\pi + \frac{5\pi}{6}\right)$	m1		Either correct rearrangement of $\frac{x}{2} - \frac{\pi}{4} = n\pi + \alpha$ to $x =$, or correct rearrangements of both the equivalents above in the M1 line involving $2n\pi$, where α is c's tan ⁻¹ (1/ $\sqrt{3}$). Condone degrees/decimals/mixture
		A1	4	ACF, but must now be exact and in terms of π .
(b)	$\tan\left(\frac{x}{2} - \frac{\pi}{4}\right) = \pm \sqrt{\frac{1}{3}}$	M1		PI. Taking square roots, must include the \pm or evidence of its use
	$\tan\left(\frac{x}{2} - \frac{\pi}{4}\right) = -\sqrt{\frac{1}{3}}$ $\implies \frac{x}{2} - \frac{\pi}{4} = n\pi - \frac{\pi}{6};$	m1		OE If not correct, ft on c's working in (a) with c's α replaced by $-\alpha$. Condones as in m1 above.
	$x = 2\left(n\pi + \frac{\pi}{6} + \frac{\pi}{4}\right), \ x = 2\left(n\pi - \frac{\pi}{6} + \frac{\pi}{4}\right)$	A1F	3	Any valid form, but only ft on c's exact value for $\tan^{-1}(1/\sqrt{3})$ in terms of π .
	$\{x = 2n\pi + \frac{5\pi}{6}, x = 2n\pi + \frac{\pi}{6}\}$			
	Total		7	

Q	Solution	Marks	Total	Comments
7(a)	$y = \pm \frac{1}{3}x$	B1	1	ACF Need both
(b)	<i>y</i>	B1		2-branch curve with branches in correct regions above and below <i>x</i> -axis
		B1		Curve approaching asymptotes
	(30) (30)	B1	3	Coords (± 3 , 0), as only points of intersection with coordinate axes, indicated. Condone -3 and $+3$ marked on <i>x</i> -axis at points of intersection as (± 3 , 0) indicated.
(c)(i)	$\frac{(x+3)^2}{9} - y^2 = 1$	M1 A1	2	Replacing x by either $x + 3$ or $x - 3$ ACF
(ii)	$\frac{(x+3)^2}{9} - x^2 = 1$	M1		Substitution into c's (c)(i) eqn of $y = x$ to eliminate y or of $x = y$ to eliminate x
	$x^2 + 6x + 9 = 9(x^2 + 1)$	A1F		Correct expansion of $(x \pm 3)^2$ equated to $9(x^2 + 1)$ OE ft; [OE in y]
	$8x^2 - 6x = 0 \qquad (8x^2 = 6x)$	A1F		Ft on error $(x - 3)$ for $(x + 3)$ in (c)(i) which gives $8x^2 + 6x = 0$ $(8x^2 = -6x)$ [OE in y]
	Points are (0, 0), $(\frac{3}{4}, \frac{3}{4})$	A1	4	Both. ACF
(d)		M1		Adding 3 to c's (c)(ii) two <i>x</i> -coords keeping <i>y</i> -coordinates unchanged.
	Points are (3, 0), $(3\frac{3}{4}, \frac{3}{4})$	A1F	2	Ft on c's (c)(ii) coordinates for the two points
				If not deduced then M0A0

Q	Solution	Marks	Total	Comments
8(a)(i)	y ↑ 5- -	B1	1	Rectangle with vertices (0, 0), (0, -3), (2, -3), (2, 0)
(ii)	R_1	M1		Rectangle with vertices either whose <i>x</i> -coords are c's (a)(i) <i>x</i> -coord vertices multiplied by 4 or whose <i>y</i> -coords are c's (a)(i) <i>y</i> -coord vertices multiplied by 2
	-5 R3	A2,1	3	A2 if rectangle with vertices $(0, 0)$, $(0, -6)$, $(8, -6)$, $(8, 0)$ (A1 if either the four <i>x</i> -coords are correct or the four <i>y</i> -coords are correct)
(b)(i)	Matrix is $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$	B1	1	
(ii)	$\begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} =$	M1		Attempt to multiply $\begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$ with c's (b)(i) matrix in either order.
		ml		Multiplication in correct order with at least two of the four ft multiplications carried out correctly.
	$\begin{bmatrix} 0 & 4 \\ -2 & 0 \end{bmatrix}$	A1	3	For $\begin{bmatrix} 0 & 4 \\ -2 & 0 \end{bmatrix}$ NMS $\begin{bmatrix} 0 & 4 \\ -2 & 0 \end{bmatrix}$ scores B3 $\begin{bmatrix} 0 & 2 \\ -4 & 0 \end{bmatrix}$ scores B1
	Total		8	

Q	Solution	Marks	Total	Comments
9(a)	Asymptotes $x = 1$	B1		x = 1 OE
	y = 1	B1	2	y = 1 OE
(b)	$-4x + c = \frac{x}{x - 1}$ (-4x + c)(x - 1) = x	M1		Elimination of y PI by next line
	(-4x + c)(x - 1) = x - 4x ² + cx + 4x - c = x	A1		OE (denominators cleared)
	$-4x^{2} + cx + 3x - c = 0$ $4x^{2} - (c + 3)x + c = 0$	A1	3	CSO AG No incorrect algebraic expressions etc
(c)(i)	Discriminant is $(c+3)^2 - 4(4c)$	B1		OE
	For tangency $c^2 - 10c + 9 = 0$	M1		Forming a quadratic eqn in <i>c</i> after equating discriminant to zero
	$(c-9)(c-1) = 0 \Rightarrow c = 1, c = 9$	A1	3	Correct values 1, 9 for <i>c</i> .
(ii)	$\underline{c=1}: \ 4x^2 - 4x + 1 = 0$	M1		Substitutes at least one of c's values for c from (c)(i) either into the given
	$\underline{c=9}: \ 4x^2 - 12x + 9 = 0$			quadratic in (b) OE or into $\frac{c+3}{8}$
	$4x^2 - 4x + 1 = 0 \implies x = 1/2 (= 0.5)$	A1		No other root from quadratic
	$4x^2 - 12x + 9 = 0 \implies x = 3/2 (= 1.5)$	A1		No other root from quadratic
	When $x = 1/2, y = -1$; when $x = 3/2, y = 3$ $\left(\frac{1}{2}, -1\right)$ $\left(\frac{3}{2}, 3\right)$	A1	4	Accept in either format
	Total		12	
	TOTAL		75	